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THE EFFECT OF FINITE ROTATION ON A PROBLEM IN PLASTIC DEFORMATION

John K. Oiencs

Theoretical I)ivision, Group T-3
Los Alamos National Laboratory
Los AIG~os, ~e,vMexico 875J5

ABSTRACT

The development of Constitutive ~dws for large-strain plastic flow re-
quires both an appropriate kinematic framework to characterize+ the deformation
and a suitable set of’physical relations between the selected measures of
stress and strain rate. In this paper it is argued that deformation is best
characterized 1).Ytaking, as the measure of strain rate, the stretching (the
symmetric part of the veloclty gradient) and assuming that it can he repre-
sented as the SUIIIof an elastic and a plastic part. Though this is a natural
extension (or perhaps only a restatement) of the 1930 hypothesis of Reuss, its
consequences differ from some more recent hypot)leses based on modern theories
of deformation. Since plastic flow laws are sxpl’essed in rate form it is nec-
essary to have a suitable definition of stress rate. Though this has hecn a
subject.of much analysis and numerous hypotheses, Dienes has shownthata
unique stress riitefollows from the nec~ssity of formulating the constitutivp
law in material axes, and that such a stress rate is franl~ invariant. Tht?
same paper shows the relation of rzte of angular velocity (material rotation
rate), deformation and spin (vorticit,y). In this paper this formulation is
used in expressing constitutive reldtions for plastic flow, including both
ideal plasticity and kinematic hardening, and the results are com;lart+riw’th
those .dMained using the Zaremba-ilaumann-Nell approximation.

INTIK)OUCTION

The theory of plasticity can be extended to account for fini~u deforma-
tion in a variety of ways. In particular, Lee [19fJ9]and Mandel [1973, 1’MII
have proposed that the deformation gradient F can be represented as tne pro~i-

uct of elastic and plastic parts FeFp, but this hypothesis does not, by it-
self, lead to a unique representation. A comprehensive discussion of dhis and
related points has been put forth by Nemat-N~sser [lq79] in which he arguns
that the deformation rate D can be represented as the Suill of elastic and pla~-
tic parts without raising the paradoxical problem arising from the product
decomposition indicated above, In addition to the kinematic Issues discussed
by Nemat-Nasser, other arguments Illfavor of the additive hypothesis for
strain rates can he put forth. First, for flows without shear coml)’~nentsit
is straightforward to show that the choice of stretching (ricforln~tlon:~tr’)as
a measure of strain rate is equivalent to the choice of loqaritt~mic strdin as



a measure of strain. For such simple flows the addition of elastic and plas-
tic strain rates becomes equivalent to taking the total stretch as the product
OF elastic and plastic stretches, a natural decomposition rule. Second, the
stretching D = (dii) appears naturally in the calculations of the rate of work

done o(]a deformable body V with surface S,

I = j u,n,u. ds = j oijdijlJIJ dv .
s v

(])

It seems reasonable to preserve dij as a measure of strain rate in the formu-

lation of constitutive laws since it necessarily appears in the calculation of
internal energy. The separation of strain rate into a sum of parts allows the
energy associated with each part to be computed, and these energies are adcii-
tive. (Such energy considerations are fundamental in mechanics. It has been
shown, for examp’le, by !lienes [1978] that the energy equatio~ can be used to
derive the momentum equations, and that the converse does not hold.) Third,
In finite difference calculations it is natural and straightforward to compute
the velocity gr~dient u. ., and thus convenient to select this as the basis
for computing strain ra/~J(the symmetric part of the velocity gradient). Vone
of these arguments is cortpletely compelling and, in tact, any c~nstitutive law
relating any measures of stress and strain can be used for calculation. One
should not expect, however, that all will he equally useful, stable, and accu-
rate. The simplest and most natural hypothesis seems to be to adopt the
stretching as the basic measure of deformation. In this article the conse-
quences of this choice are pursued for ideal plasticity and kinematic harden-
ing. The results seen plauslble and straightforward.

CONSTITUTIVE ilELATION

If It is assumed that the strain rate is the sum of elastic and plastic
F:’’:SF it is necessary to formulate a constitutive law for each part. The
elastic part of strain rate can be set proportional to the stress rate, as in
hypoelastlcity, but then It becomes Important that the stress rate be suitably
chosen, It has been shown by Dlenes [7] that stress rate should be defined

using (n = ~RT) as the rate of material rotation, and that o can be expressed
exactly as the vortlclty plus an additional rate term. For small deformations
this stress rate Is equivalent to the Zaremba-Jaumann-Nell (ZJN) stress rate,
but for large deformations the ZJN stress rate Is unrealistic and can lead to
an Instablllty.

Formulation of a constltutlve law for Ideally-plastic flow pre~ents no
real dlfficult,y beyond defining the rates of stress and strain suitable, but a
hardening plasticity theor,y Is often needed for added realism, and such theo-
ries abound. They can be taken as either Isotropic or ~nlsotropic, but meas-
urements of yield surfaces performed by Phllilps and Tang [1972] t~nd to show
that yield surfaces translate In stress space rather than expand lsotrop-
Ically. This behavior Is represented in the k{ne~atic hardening algorlthrl of
Praqer [1955], In which a back stress is defined ky a rate equation. This
formulation aqain raises the prohlelv of deflnlng stress rate in a suitable
manner. It has been found by Nagtegaal and d~ ,Jrn:[lg:!l] that use of the ZJN
rate in connection with kinematic hardening leads to an unre~llstic oscilla-
tory behavior at large strains. As ~ res,jlt,Lee, ,‘ Xett and Werthcimer have
proposed an alternative kinematics of pl(,sticity [l~;ll;~,while l)?ifdllFiS[19H3]



has considered the finite deformation stress rate described by Grbeen[196;]
and studied in detail by Dienes [1979]. An alternative is proposed in this
paper based on the finite deform~:ion stress rate and the additive assumption
for resolving strain rate into elastlc and plastic parts. In an example, the
consequences of these assumptions are compared with the ZJN theory for pure
shear, and it is shcwn that the proposed approach leads to plausible results
at large strain, whereas the ZJN theory leads to the unrealistic oscillation
observed by Nagtegaal and de Jong, and no correction (as in !?euss’original
theory [1930]) leads to aradoxical behavior. Similar results have been re-

Icently presented by Key 19837, but the emphasis in this paper is somewhat
different, fccussing on the definition of strain rate, and demonstrating how
the current approach eliminates the unrealistic behavior at small strains ob-
tained by Ilafalias as a result of assuning rigid-plastic behavior.

THEORY

The classical approach to problems of plastic flow is to express the
strain rate as the SUIIof elastic and plastic contributions

(z’)

as suggested by Reuss (op. cit.) and to formulate separate constitutive laws
for the terms on the right. Though a variety of definitions of strain rate
have ~een propc,sed, many of which are described by Eringen [1967], the most
straightforward is to follow the usage in hypoelasticity in which the velocit,y
gradient C is taken as the SUIIof symmetric and antisymmetric parts, and the
symmetric part, D, is selected to be the strain rate, so that

(uij)=G=D+w
3L

(3)

where W is the vorticity. This notation and much of the terminology used here
follow Truesdell [1966]. Though the term “stretching” for IIdoes not present
any difficulty, when it is identified as the “strain rate” a semantic diffi-
culty arises because this suqgest that it represents the rate of a well-
deficed strain. Though this idea works for small deformations, for finite de-
formations no completely suitable strain has been defined in terms of the rie-
fGrmation, and, so far as I know, there is none whose rate is Il. “rhis is not
a great loss, since an alternative quantit,y, the stretch, characterizes defor-
mation adequately. f)fcourse, one can define the strain natrix as the loga-
rithm of the stretch matrix, and in the absence of shear this strain repr~-
sents the logarithmic strain, but in general no useful result is forthcoming,
and its rate of change is not g.

AS the constitutive relation for the elastic component of strain rate 0’?
it is natural to take the stress rate to he linear in the stress rate. For
small deformations the stress rate Is adequately characterized b.ythe approxi-
mate rate of Zaremba [1903], Jaumann [1911], and Nell [1955]

v
(J “ ; - No + Ow (4)

but fcr large deformations it is necessary to use an exact formulation, as
discussed by Ilienes [1!?79], in which



A

a=; .Q~+& (5)

where a denotes the rate of material rotation

(6)

and R denotes naterial rotation. This expression for stress rate has been
noted by Green and McInnis [1967], Storen and Rice [1975] and others, but the
relation of Q to vorticity, W, summarized in the subsequent paragraph, was de-
rived by Dienes [1979].

The basis for the analysis of large deformation is the polar decomposi-
tion of the deformation gradie~t

()

ax.
F=&=VR (7)

‘J

where x. represents the coordinates of the point initially at <i, V is the

(positi;e definite) stretch and R is orthogonal . To obtain the relation of ;2
and M define

z = I-IV- WI (8)

and

S=(ItrV-V)-l (9)

where tr V denotes the trace of V and I denotes the identity Inatrix. The
antisymmetric matrix Z can be represented ar a vector with components z, by
means of the perm~tation symbol Cjjk so that

‘ik
= C,jkzj .

Then, If one defines

‘Ik =S.ZE
J9, k? Ijk ‘

(10)

(11)

It can he shown by direct algehralc calculation that

0 ❑ i!+A, (12)

where A IS the matrix of the A
IJ’

This algorithm has been successfully USed

In calculations of large deformation with SCRAM, a version of the finite dif-
ference SALIIcode devel~ped by Amsden, Ruppel, aridtllrt[1980], witn the addi-
tional relat.lon

~= GV-VO,

used to update V In the course of the calcu’
Ic and do not depend on material behavior,

(13)

ation. [hese res~lltsare klnemat-



The plastic stretching is taken proportional to the deviator stress, o’,

~P = au’ = A(U -;1) (14)

in ideal plasticity, and A can be determined from the yield condition

‘ija;j ‘ 2Y2

to be

A =0!. d?./2Y2 .
lJ lJ

(15)

(16)

These equations can be combined to obtain an expression for the rate of change
of deviator stress

:’ ❑ Qry’+ U’n + Zp(r)’ - Au’) (17)

that can he used conveniently in numerical calculations to update the stress.
In impact and explosion problems it is necessary to supplement these equations
with an equation of state for th~ mean stress ;. In this paper, however, we
consider only the simplest flows.

Before DroceedincI to a discussion of hardeninq behavior it will Drove
useful to
the examp”

x=
1

I showed

consider fi;st the conseque~ces of these-ronstitutive relations in
e of stearly simple shear, for which

‘1
+ v(@t , X2 = ~2 , X3 = ~3 . (18)

n the previously cited paper that for sllcha flow

e=~t=
and that the vorl

2 tan 3 ,

(1,~)

(20)

iclty is given by

6/(1 + t32) ●
(?1)

‘hUs’ ’12
is well approximated by WI for small strain, but the approximation

falls for large strain. fFor such a low the stretching Is glv~n by

()
l-)= “ ;/2 .

6/2 0
(2?)



It fcliows that the mean stress satisfies

; . ;oe-vw/Y2
(23)

-o
where a is the initial value of the mean stress. Hence, if ~“ is initially
zero, it is zero for all times. Since the flow stress remains on the yield
surface after initial yielding, it follows that it depends on a single varia-
ble, which we select, as e,

’11
=Ysino, Ol,

L

With this constraint, each

sin e - 1
%+ 2E

1 + e2/4

whe ‘e

E = Y/2p ,

such that

=Ycose . (24)

of the flow equations (17) reduces to

(25)

(26)

To determine the initial conditions we may use the elastic solution of Dienes
[197’31,which shows that yield occurs when e = E, to first order, under the
(realistic) assumption that E is small. No closed form solution to (25) is
known, but an approximate solution can be obtained by putting B = cu.

B =2- exp (1 - e/2c) - e2/2 + 2ce . (27)

This expression for e has a maximum of 1.99 for e ❑ 0.14 when E Is set to
11.01, A numerical sc)lution of (25) is shown In Figure 1. The maximum agrees
with the analytic results, but the numerical solution shows in addition that o
goes to zero for large e. The figure also shows the behavior of e when the
effect of material rotation is ignored, which is tantamour}t to dropping the
right side of (24). IrI that case 0 drops ra:idly to zero. If the ZJN ap;Jrox-
imation is used the right side of (25) becones unity, and the resulting behav-
ior of B is also illustrated in the figure. In that case e increases mono-
tonically to .f12with increasing strain and remains at that value. In summa-
ry, it appears to be necessary to account for finite deformation in computing
stress rate in plasticity as well as in elasticity if realistic material be-
havior is to be obtained at strains larger than 0.4.

KINEMATIC H,4RDEYING

In their analysis of hardening behavior Nagtegaal and de Jong [19Rlj ob-
served spurious oscillatory behavior of stress with ‘Increasing strain.
Ilafalias [1983] recently showed that this oscillatory behavior is a conse-
quence of using the 2JN approximation, and disappears when the finite deforma-
tion theory is ~sed. He was able to obtain an analytical solution for the
stresses in a simple shear flow by assuming rigid-plastic behavior. Here we
consider kinematic hardening with the finite deformation theory used to char-
acterize both the elastlc strain rate and the back stress, Though I descr:bz~
: general kinematic hardening theory suitable for high-pressure behavior in an
earlier paper [llienes, 1’375]only the simplest kinematic hardening theor,v Is
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.4 comparison of the stress parameter e (012 = Y sin e) for s“mple

shear; (1) in the absence of stress rotation (Peuss); (2) using the
Zarenba-Jaunann-Nell (ZJN) approximation; and (3) using finite
rotation theory. For e less than qOf)2the behavior is elastic.
The ZJN approximation produces insignificant error for strains
below 0.2.

her~, with the objpct of illustrating the importance of an adequate

stress rate theory.

The experimental results of Phillips and Tang [op. cit.] show that the
subsequent yield surfaces observed after loading resemble those of kinematic
rather than Isotropic hardening theory. In the-simplest representation of
such behavior, the deviator stress is considered as the sun of a back stress
m and a plastic stress ?

-
a’ =a+s (28)

with ~ lying on a displaced yield surface, so that

?ij3iJ ‘ 2Y2

where Y IS the yield stress in simple sh[~ar. Following Praqer [1955], the
back stress rate Is assumed proport~onal to the plastic strain rate

A
a=l- ~a + ~i = bDp (30)

where b IS the hardening modulus of the material, except that n rather than
U Is used for the rate of material rotation, The qeneralizatlon to harcien-
Ing plasticity Is completed by the relations



.

I)e = ;/2u + I;/3k (31)

where u denotes the mean stress; k, bulk modulus; and

Dp = (A/2Y)5 .

With these assumptions it is straightforward to show that

.

(32)

(33)

where

l/y = (1 + b/2v)Y . (34)

Using the same procedure as in the analysis of ideally plastic behavior, it
is straightforward to show that, if Z = u

11 + ’22
vanishes initially, then

it remains zero throughout the deformation. As before, it proves natural to
set

$1 = Y sin e , 312 = Y Cos 0 . (35)

nirect calculation shows that s is still governed by (25) in the presence of
hardening.

If we define the dimensionless quantities

al = all’b ‘ a2 = a12’h ‘ l/q = 2 + b/u

then these equations reduce to the pair

dal
a2

T = q cos 0 sin 0 +
1 + e2/4

(36)

(37)

da2
al

F =qcos%~. (38)
l+e/4

The results of numerical integration of these equations are are illustrated in
Figures Z and 3, and, as in Figure 1, comparisons are nade with the ZJN ap-
proximation and with the behavior calculated in the absence of a correction
for rotation. These results illustrate that it is important to account for
material rotation exactly if reasonable results are to be obtained ?or large
deformation. The results are similar to those of nafal ias except for small
strains, since here the rigid-plastic assumption is relaxed. (This makes it
necessary to perform the integrations numerically, whereas Dafal ias obtains an
analytic solution.) In general, however, numerical solutions are required,
and the algorithm of equations (8-13) seems well suited for that purpose. In
referring to this algorithm both Lee et al [1983] and 17afalias [lq83] suggest
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Fig. (3) - Plot of the dimensionless normal stress as a function of the strain
parameter e, comparing solutions: (1) in the absence of stress ro-
tation (Reuss); (2) in the ZJN approximation; and; (3) using finite
rotation theory.



that it is vclid only for nypoelastic deformations. This misinterpret aticm
appears to arise from considering only the example I selected, which involves
the simplest material for which a rate law formulation is appropriate. The
underlying theory, however, is entirely general, involving only kinematics,
and makes no material assumptions beyond those usual in continuum mechanics
and the polar decomposition theorem.

In summary, the approach to plasticity outlined here maintains Reuss’
classical superposition of elastic and plastic strain rates, but requires that
the rate of material rotation n, given by (12), be used in computing stress
rate, rat!~erthan its approximate representation, the spin (vorticity). In an
example, it is shown herein that this approach provides reasonable results and
ca,l be readily implemented.

Professor Bell has performed an important service in organizing and ex-
tending experimental results concerrling plastic flow [1979, 1~81]. Their full
understanding will require significant theoretical advances, including a bet-
ter treatment of the role of microstructure. At large deformations it is nec-
essary to account for the kinematics of deformation precisely, and contin~(l~
mechanics, especially the consequences of polar decomposition, provides a use-
ful approach. The kinematics and physics of large deformation are particular-
ly important in the analysis of material behavior on the microstructural lev-
el, where crystal ar~isotropy and mechanical instabilities play inportant
roles. For example, microstructural instabilities probably underlie the
second-order transitions observed by Bell. The behavior of microstructure is
even more important in its role in the nucleation of fracture. Our under-
standing of the relationship of instabilities at the microstructural level and
material strength has only just begun, To make significant progress it aP-
pears that it will be necessary to combine careful experiments, ccmputer simu-
lation, more precise kinematics, and cofldensed-matter physics, a process which
has only recently started.
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